Overview of geomechanical test results from Opalinus Clay core samples

ENSI/EGT Symposium, Zurich, February 14th 2014

Silvio Giger, Paul Marschall (Nagra)

Lyesse Laloui, Alessio Ferrari, Valentina Favero (EPFL)

Overview

- 1. Role of geomechanics in context of repository design
- 2. Data base/locations of sampled cores for geomechanical testing
- 3. Geotechnical characterization
- 4. Unsaturated behaviour and swelling
- 5. Uniaxial and tensile strength
- 6. Shear Strength
- 7. Integrated data analysis

nagra

1 Role of geomechanics in repository design

- Cavern construction & operation (incl. access ramp/shaft)
- Boundary conditions of long-term evolution (after backfill)
- Drilling operations (exploration)

2 Data base

 Material characterization and deformation tests on recovered specimens in the laboratory

\rightarrow Focus of this presentation

- Additionally to core sampling for geomechanical testing:
 - Field observations (e.g. structural data)
 - Geophysical logging (boreholes)
 - Excavation/construction works at URL Mont Terri

Coring at URL MT

Retrieved cores from Borehole Benken

3 Geotechnical characterization - purpose

- Opalinus Clay: Weak rock or stiff soil?
- Deformation behaviour of geomaterials in the transition soil $\leftarrow \rightarrow$ rock?

3.1 Geotechnical characterization – grain size & plasticity

- Classification of the material (index properties)
 - Density (particle, bulk), water content, void ratio, degree of saturation
 - Grain size distribution
 - Atterberg limits (liquid limit, plastic limit, plasticity index)

3.2 Mineralogy

- Relatively homogeneous composition at individual locations and across Northern Switzerland
 - Clay mineral content typically 60wt.% (40-75wt.%) (swelling Illite/Smectite interlayers approx. 10wt.%)
 - Quartz/feldspar typically 20wt.%
 - Carbonates typically 20wt.%

4.1 Unsaturated behaviour- quantification

6.1 Shear strength - undrained triaxial strength (SLA-1 cores)

13 /19

ENSI/EGT Symposium, Feb. 14th, 2014

- Test quality assessment as part of the workflow of Geodata at Nagra
- Diagnostic analyses with focus on consolidation equilibrium
- Quality ranking of tests for further interpretation

Test	Skempton Test (ref. Table 3-1)	Saturation state (ref. Tables 3-2 to 3-5)	Consolidation/swelling (ref. Tables 3-2 to 3-5)	Q-Level
P09	Incomplete saturation	no	no	D
P10	Incomplete saturation	almost	no	D
P13	Incomplete saturation	almost	no	D
P14	Distorted pwp response	almost	no	в
P109	ok	ok	almost	В
P115	ok	ok	no	в
S03	Consolidation disequilibr.	ok	almost	C**
S05	Incomplete saturation	almost	no	С
S06	Incomplete saturation	almost	no	D
S07	Consolidation disequilibr.	almost	no	D

Total confining stress consolidation: 7.6MPa, 22.6MPa

nagra

14 /19

nagra

Summary

- Careful material characterization is critical:
 - For appropriate storage/sample preparation for geomechanical testing
 - To anticipate/understand processes during geomechanical testing
 - Understand apparent 'artefacts' due to unsaturated conditions
 - Enable empirical comparison with similar materials
- Consistent data set of Opalinus Clay sampled at different depths
 - Greater burial depth correlates with decreasing porosity, greater stiffness and increasing strength (URL MT→BEN→SLA-1)
- Use multiple lines of evidence to assess data
 - 'Simple' and well accepted standard' (index) tests coupled with empirical correlations
 - Sophisticated and difficult tests (e.g. undrained triaxial)
 - Comparison to literature data with results of similar material

•	Sorgfältige Charakterisierung des Probenmaterials ist entscheidend:		
	 Für angemessene Lagerung/Probenpräparation vor dem Deformationsexperiment 		
	 Für das Prozessverständnis der beobachteten Phänomene während dem Experiment und möglicher Artefakte aufgrund ungesättigter Verhältnisse Für empirische Vergleiche mit ähnlichen Materialien 		
•	 Für den Opalinuston kann ein konsistenter, geomechanischer Datensatz hergeleitet werden, der die Tiefenlage berücksichtigt Grössere Tiefenlage korreliert mit geringerer Porosität und grösserer Steifigkeit sowie Festigkeit (UPL MT→BEN→SLA-1) 		
•	Die Dateninterpretation sollte sich auf unterschiedliche Evidenzen stützen		
	 'Einfache' bzw. 'Standard' (Index-)Versuche gekoppelt mit empirischen Korrelationen 		
	- Komplexere aber auch ungleich schwierigere Tests (Triaxialversuche)		
	- Vergleich mit Literaturdaten mit Resultaten aus ähnlichen Materialien		

