Symposium questions to be answered:

* What are the anticipated in-situ stress magnitudes and orientations at a
depth between 400 and 900 m at the potential repository sites, and how
reliable are these estimates?

* What are the time-dependent rock mechanical processes relevant for the
development of the excavation damage zone in space and time and
consequently for the long-term safety?

* What is the influence of natural discontinuities on the rock mass behavior?

* How reliable can complex HM-coupled processes be reproduced using
numerical models?

* Which measures (e.g. underground ventilation or support) can be taken to
minimize time-dependent damage of the geological barrier?

* How do rock mechanical and geological conditions influence the layout,
construction, operation and closure of the repository?

* How can knowledge gained from the Mont Terri Underground Research
Laboratory and other sites be transferred to future site conditions?

ROCK MECHANICS AND ROCK ENGINEERING OF GEOLOGICAL REPOSITORIES IN
OPALINUS CLAY AND SIMILAR CLAY-RICH ROCKS

Opalinus Clay in SE Microscope
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Geotechnical behaviour of clay shale

* Clay shales are widespread

» Clay shales are notorious for creating difficulties in

geotechnical engineering

» collection of undisturbed samples

» determination of representative strength and stiffness properties
» change in properties with water content

» role of suction (Water retention characteristics)

» effective versus total stress response

» prediction of their behaviour.

Morgenstern (1979): “....the exchange of relevant
experience in dealing with this class of materials is
one of the most effective ways of improving our
practice.”
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North American — Argillaceous (Clay) shales

-~

* North America shale plays. |Adapted from Kuuskraa et al, ref 4]




Case Histories

Site C — Shaftesbury Formation
Niagara — Queenstown Shales
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Weak Rock: Transitional material (Clay shale)

We regard clay shale:

e as transitional materials between soil mechanics and rock

mechanics.

» geological material having geologic structure, faults, joints, defects,

micro and macro structures.

» a sedimentary formation that can be somewhat fissile and stratified
and yet behaviour very much like a hard/stiff clay (soil mechanics)

and is very heavily overconsolidated.
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Characteristics of clay shales

Characteristics (very challenging for laboratory testing):
» Contains a significant amount of clay minerals
- Contains weak minerals: smectites
* Porosity >4%
» Strength a function of moisture content
e No or little true cohesion (influence of water retention — suction)
» Time-dependent deformations:
- Swelling upon unloading
- Squeezing when over-stressed
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Site C Project: Site characterisation (1978-1981)

Because of the difficulties with laboratory characterisation, there is a
greater reliance assessing performance based on in-situ tests, e.qg,
Mine-by tunnels

Shaftesbury Formation: Clay shale




Oldman River Dam Dickson Dam Site C Dam Gardiner Dam

S |te C Formation Porcupine Hills Paskapoo Shaftesbury Bearpaw
Age Paleocene Tertiary to Lower Upper
Upper Cretaceous Cretaceous Cretaceous
Deposition Non-marine Deltaic Marine Marine
environment
Bedrock Mudrock Sandstone, siltstone  Shale, silty shale, Shale, silty shale,

and sandstone claystone and shale and siltstone and siltstone

ey

Little, 1989

Test chamber- 11 m diameter
Could it be constructed?
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Site C Diversion Tunnel Test Chamber
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Anisotropic response
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W ED-B (3.6 m diameter) Results
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* Challenges of doing in-situ tests in Clay shales

» EDZ was relatively small, but convergences were relatively large
(De=0.1to 0.2%)

» Slip along the bedding was minor but nonetheless present
* Time-dependent deformations were evident but relatively minor

» Pore pressures responded to the tunnel advance by first gradual
loading and then rapid unloading
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Mine-by Niche Instrumentation

Major enhancement to instrumentation compared to ED-B Tunnel

K.-H. Lux, U. Dusterloh, O. Czaikowski
Clausthal University of Technology
(Rock-like testing — No pore pressures)
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Pore-pressure response & Yielding
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Time dependent deformations
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Mine-By Niche Findings

» Tunnel orientation relative to bedding is important at Mont Terri
 EDZ much larger compared to ED-B tunnel
» Convergence very large (De=1 to 1.5%), order of magnitude greater

compared to ED-B tunnel

» Support system adequate for ED-B, no longer adequate
» Time-dependent deformations were much more evident
» Pore pressures responded to the tunnel advance by first gradual

loading and then rapid unloading ahead of the tunnel face
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What did we learn from these In-
situ experiments?

Morgenstern (1979): “....the exchange of
relevant experience in dealing with this class
of materials is one of the most effective ways
of improving our practice.”




Comparison: Uniaxial strength
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5 Tunnel Performance in Weak Rocks
20.0
g 100F O%@Q gnslable
% 5.0 -‘,‘-9-"-‘9“{{0 % %
13 ---"'-._9@_
g g ~<A 0

Empirical S 1 Qo WL EE~- ™

correlation between £ | TeE im0

tunnel performance ¢ [S¥Lo____ nt P

and rock mass 8 osp i |

strength by 5 m

Chern et al, (1998). oer Stablem

0j2 0:5 1.IO ZjD 5?0 1DI.0 20I.0

Rock Mass Strength (MPa)

Below
Level |

+ Construction can continue
* No specal acton required

Level
]

« Construction can continue
* Increase frequency of monitoring and field observations

Level
-t

* Tunnel is susceptible 1o instability, suspend construction temporanly
* Conduct detaled inspaction of tunnel Ining and increase monitor frequency
* Conduct thorough investigations of potential causes of the problem including support quality, timing of support instalation and excavation

procedure

= Install additional support and/or revise tunnelling procedure, f requirad

Above
Leved il

= Constructon work should be stopped

* Increase fraquency of monitoring and field observations

* Conduct thorough investigations of potential causes of the problem and implement remadial measures

+ Revise the support design andlor construction procedures

= Construction can be resumed only after remedial measures have been implemented and the trend of instability has been reversed
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Underground experience
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Summary:

Mudrocks (Clay shales) are located in many
countries

Extensive experience with the performance of
engineered structures in and on clay shales

Their geotechnical behaviour has been studied
extensively both in the laboratory and in-situ

Greater reliance on in-situ testing to quantify their
geotechnical characteristics

Prediction of their in-situ behaviour remains
challenging

Zusammenfassung

Tonsteine (Tonschiefer) findet man in vielen
Laendern

Es existieren intensive Erfahrungen in
Zusammenhang mit Bauprojekten in Tonsteinen

Ihr geotechnisches Verhalten wurde bereits intensiv
auf der Laborskala und der in-situ Skala untersucht

Groesseres Vertrauen in in-situ Tests bezueglich
der Quantifizierung ihres geotechnischen
Verhaltens

Vorhersage ihres Verhaltens in-situ bleibt
herausfordernd
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