

Structure of the talk

- Excavation techniques
- Lining
- Rock mass behaviour during and after the excavation
- Conclusions

21

- **Protection of Opalinus Clay:** lining avoids desaturation of Opalinus Clay (shrinkage, desiccation cracks)
- **Convergence confinement method:** final lining is not placed immediately after excavation. Limited convergences are allowed.
- Safety and stability:
- short-term safety (accessibility for miners, SUVA conditions)
- long-term safety (stability of galleries)
- monitoring & supervision of convergences (monthly-1/2 year)
- localised shotcrete renovation (after 10 max. 20 years)

09.09.2003, 17:41

11.09.2003, 13:46

Photos: K. Schuster, BGR

11.09.2003, 14:37

11.09.2003, 16:40

11.09.2003, 21:12

12.09.2003, 11:04

ETH Symposium «Rock Mechanics and Rock Engineering of Geological Repositories in Opalinus Clay and Similar Claystones», 14. Feb 2014

Conclusions (1 of 2)

37

Which results from Mont Terri can be transferred to a future repository for high level waste in the Opalinus Clay?

- Role of anisotropy: partly transferable (rotation of 45°). Enhanced convergences and breakouts at tunnel roof and floor. Not transferable is the stress field.
- Role of tectonic faults: partly transferable. Clearly lower fault frequency at potential future sites (*Mont Terri = worst case, tectonically active faults?*). However fault zones at future repository sites cannot be excluded
- Role of EDZ: partly transferable. Clearly more pronounced than at Mont Terri (Mont Terri: 300 m, future site for HLW between 400 and 900 m)

- · Magnitudes are obtained by borehole slotter hydraulic fracturing, over- and undercoring
- · Stresses in Opalinus Clay not well constrained
- · Different stress field in Opalinus Clay and bounding limestone formations

Rock mechanical variability in the Opalinus-Ton

53

Mont Terri Project

45

- No standard approach for conditioning and testing of samples
- Heterogeneous samples of sandy facies cause large variations
- Variable water contents between different datasets, tests should be performed as a function of suction
- No individual test series which comprise the whole range of facies types
- Still only scarce data from the sandy or carbonate-rich facies

Lining: triangular steel arches in FE-A niche

Ū

ETH Symposium «Rock Mechanics and Rock Engineering of Geological Repositories in Opalinus Clay and Similar Claystones», 14. Feb 2014