In situ stress in potential siting areas in northern Switzerland from stress data and 3D geomechanical-numerical models

O. Heidbach¹, T. Hergert², J. Reinecker³, K. Reiter¹, S. B. Giger⁴, T. Vietor⁴, P. Marschall⁴, M. Schnellmann⁴

¹Helmholtz-Centre Potsdam - GFZ German Research Centre for Geosciences ²GeoThermal Engineering, ³Karlsruhe Institute of Technology KIT ⁴National Cooperative for the Disposal of Radioactive Waste NAGRA

Introduction

- 1. Why is crustal stress important?
- 2. What are the stress sources?
- 3. How to decribe the stress state?

Introduction

- 1. Why is crustal stress important?
- 2. What are the stress sources?
- 3. How to decribe the stress state?

Introduction

- 1. Why is crustal stress important?
- 2. What are the stress sources?
- 3. How to decribe the stress state?

six independent components

Introduction

- 1. Why is crustal stress important?
- 2. What are the stress sources?

GFZ

Helmholtz-Zentrum

-2

[k]

Depth

-5

-6

-7 0

20

40

S_h

60

80

Stress and pressure [MPa]

Po

3. How to decribe the stress state?

Slide 6

Outline

1. Stress data Switzerland

Approx. 300 data for S_{Hmax} orientation
Three boreholes with stress magnitudes

2. Sensitivity study of in-situ stress

- Case example on the basis of the geological model of Nördlich Lägern*
- 3D geomechanical elasto-plastic model
- Impact of rock stiffness and strength
- Impact of faults and topography
- * Equivalent geomechanical modelling is currently being performed for the other SF/HLW siting areas (Jura Ost and Zürich Nordost)

GFZ Helmholtz-Zentrum

EGT/ENSI Symposium Zürich, 14th February 2014

Slide 7

HELMHOLTZ

EGT/ENSI Symposium Zürich, 14th February 2014

Helmholtz-Zentrum

Slide 12

Stress Regime vs. Depth

Interim Summary

Stress orientations

- long wave-length and well known

- controlled by Moho and topography

Stress magnitudes

- S_V well-known from density logs
- S_h estimates only at three sites in Switzerland
- variability of S_h and S_H is poorly known

Stress regime

- varies with depth from strike-slip to extensional
- local and shallow resolution is low
- Geomechanical models are helpful tools to study the 3D stress field and its variability

Slide 15

GFZ Heimboltz-Zentrum POTSBAM EGT/ENSI Symposium Zürich, 14th February 2014

Outline

1. Stress data Switzerland

Approx. 300 data for S_{Hmax} orientation
Three boreholes with stress magnitudes

2. Sensitivity study of in-situ stress

- Case example on the basis of the geological model of Nördlich Lägern*
- 3D geomechanical elasto-plastic model
- Impact of rock stiffness and strength
- Impact of faults and topography
- * Equivalent geomechanical modelling is currently being performed for the other SF/HLW siting areas (Jura Ost and Zürich Nordost)

HELMHOLTZ

Location of the Local 3D Geomechanical Model

Location of the Local 3D Geomechanical Model

Model Geometry: Formations and Faults

Potential Future NS Shortening

Potential Future NS Shortening

Potential Future NS Shortening

Summary and Conclusions

