Simulating the impact of glaciations on continental groundwater flow systems: Model application to the Wisconsinian glaciation over the Canadian landscape

Jean-Michel Lemieux, Engineering Geology, ETH Zürich E.A. Sudicky, University of Waterloo W.R. Peltier, University of Toronto L. Tarasov, Memorial University of Newfoundland

Kolloquium zum Thema glaziale Tiefenerosion, 21.01.2009

# Outline



- Motivation
- Objectives
- Impact of the Wisconsinian Glaciation on Canadian Continental Groundwater Flow
  - Numerical Model
  - Recharge and seepage dynamics
  - Groundwater flow, Brine and Mean Age Evolution

## 3 Conclusions

Introduction

Impact of the Wisconsinian Glaci. on Groundwater Flow Conclusions Motivation

# Last Glacial Maximum [-21 ka]



Impact of the Wisconsinian Glaciation...

Jean-Michel Lemieux

Introduction

Impact of the Wisconsinian Glaci. on Groundwater Flow Conclusions Motivation Objectives

## Simplified Cross Section



Motivation Objectives

### **General Objective**

**Objectives** 

Reconstruct groundwater flow, age and brine evolution during the Wisconsinian (-120 ka to present) glaciation with a 3D numerical model over the Canadian landscape.

### **Specific Objectives**

- Process understanding
- Subglacial pressure evolution
- Portion of meltwater that recharged groundwater
- Groundwater flow patterns, brine and age distribution

Numerical Model Recharge and seepage dynamics Groundwater flow, Brine and Mean Age Evolution

### HydroGeoSphere (Therrien and Sudicky)

- Control-volume finite-element multi-continuum fully-coupled variably-saturated, surface-subsurface flow model.
- Density-dependent groundwater flow with 1D hydromechanical coupling.
- Brine transport (advection-dispersion equation) with brine generation (1rst-order source term).

Numerical Model Recharge and seepage dynamics Groundwater flow, Brine and Mean Age Evolution

## Computational Domain



Jean-Michel Lemieux Impact of the Wisconsinian Glaciation...

Numerical Model Recharge and seepage dynamics Groundwater flow, Brine and Mean Age Evolution

# **Computational Grid**



- Model extent: 10,000 km
   × 6,000 km
- Total 2D area: 2.5 × 10<sup>7</sup> km<sup>2</sup>.
- Cell size: 25 × 25 km
- ne: 402 034

Vertical exaggeration: 200  $\times$ 

Numerical Model Recharge and seepage dynamics Groundwater flow, Brine and Mean Age Evolution

# Continental Crust Hydrogeology



Modified from Stober and Bucher [2004]

Numerical Model Recharge and seepage dynamics Groundwater flow, Brine and Mean Age Evolution

## Hydraulic Properties Distribution



Numerical Model Recharge and seepage dynamics Groundwater flow, Brine and Mean Age Evolution

### **Boundary Conditions**



Model Forcing: Peltier and Tarasov, U. of Toronto Glacial Systems Model:

- Ground surface elevation
- Relative sea Level
- Ice thickness

- Permafrost thickness
- Meltwater rate
- Surface water depth

Jean-Michel Lemieux Impact of the Wisconsinian Glaciation...

Numerical Model Recharge and seepage dynamics Groundwater flow, Brine and Mean Age Evolution

### Sea Level Change



Introduction Numerical Model Impact of the Wisconsinian Glaci. on Groundwater Flow Conclusions Groundwater flow, Brine and Mean Age Evolution

### Isostasy

# Surface elevation and ice thickness variation in Waterloo, Ontario:



Numerical Model Recharge and seepage dynamics Groundwater flow, Brine and Mean Age Evolution

### Permafrost Evolution

LIG



[Tarasov and Peltier, 2005]

LGM



[Tarasov and Peltier, 2005]

Numerical Model Recharge and seepage dynamics Groundwater flow, Brine and Mean Age Evolution

# **Simulation Details**

- Simulation time: 120 kyr
- Boundary conditions update: 1 kyr
- Timesteps: 0.1 kyr
- Results:
  - Surface/subsurface water interaction
  - Groundwater flow evolution
  - Mean groundwater age and brine distribution

Numerical Model Recharge and seepage dynamics Groundwater flow, Brine and Mean Age Evolution

# Recharge and seepage dynamics

pgfpicture

Units: m/yr

Introduction

Impact of the Wisconsinian Glaci. on Groundwater Flow Conclusions Numerical Model Recharge and seepage dynamics Groundwater flow, Brine and Mean Age Evolution

# Subglacial Exchange Flux



Introduction Numerical Model
Impact of the Wisconsinian Glaci. on Groundwater Flow
Conclusions
Groundwater flow, Brine and Mean Age Evolution

## Summary

Table: Summary of the average infiltration and exfiltration rates for the subglacial and periglacial environments during the glacial cycle and the last interglacial period.

|                         | Infiltration<br>[m/yr] | Exfiltration<br>[m/yr] |
|-------------------------|------------------------|------------------------|
| Subglacial environment  | $2.47 \times 10^{-3}$  | $2.03 \times 10^{-3}$  |
| Periglacial environment | 1.30×10 <sup>-6</sup>  | $7.08 \times 10^{-6}$  |
| Interglacial period     | $2.87 \times 10^{-5}$  | 3.25×10 <sup>-6</sup>  |

Numerical Model Recharge and seepage dynamics Groundwater flow, Brine and Mean Age Evolution

## **Cross Section Location**



Jean-Michel Lemieux Impact of the Wisconsinian Glaciation...

Numerical Model Recharge and seepage dynamics Groundwater flow, Brine and Mean Age Evolution

## Hydraulic Head and Permafrost Distribution

### pgfpicture

Introduction Numerical Model Impact of the Wisconsinian Glaci. on Groundwater Flow Conclusions Groundwater flow, Brine and Mean Age Evolution

### Relative Concentration at LGM (1 = 265 g/l)



### Groundwater Age Distribution at LGM



Vertical Exaggeration:  $100 \times$ 

# Conclusions

- Simulation results show that the Wisconsinian glaciation had a profound impact on continental groundwater flow patters and geochemistry
- In the subglacial environment, meltwater infiltration into the subsurface dominates when the ice sheet is growing. Conversely, groundwater exfiltrates during ice sheet regression.
- Over the glacial period, the average subglacial infiltration rate into the subsurface ranges between 0 and 6 mm/yr with an average of 2.5 mm/yr. At LGM, ~20% of subglacial meltwater recharged.
- Permafrost evolution and distribution strongly influences groundwater circulation patterns.
- Pressure signatures at depth due to ice loading remain and is still recovering at present.

# **Publications**

- Lemieux, J.-M., Sudicky, E.A, Peltier, W.R, and L. Tarasov, 2008. Dynamics of groundwater recharge and seepage over the Canadian landscape during the Wisconsinian glaciation, J. Geophys. Res., 113, F01011
- Lemieux, J.-M., Sudicky, E.A, Peltier, W.R, and L. Tarasov, 2008. Simulating the impact of glaciations on continental groundwater flow systems: 1. Relevant processes and model formulation, J. Geophys. Res., 113, F03017
- Lemieux, J.-M., Sudicky, E.A, Peltier, W.R, and L. Tarasov, 2008. Simulating the impact of glaciations on continental groundwater flow systems: 2. Model application to the Wisconsinian glaciation over the Canadian landscape, J. Geophys. Res., 113, F03018